Back to Search Start Over

Real-time user clickstream behavior analysis based on apache storm streaming.

Authors :
Pal, Gautam
Atkinson, Katie
Li, Gangmin
Source :
Electronic Commerce Research; Sep2023, Vol. 23 Issue 3, p1829-1859, 31p
Publication Year :
2023

Abstract

This paper presents an approach to analyzing consumers' e-commerce site usage and browsing motifs through pattern mining and surfing behavior. User-generated clickstream is first stored in a client site browser. We build an ingestion pipeline to capture the high-velocity data stream from a client-side browser through Apache Storm, Kafka, and Cassandra. Given the consumer's usage pattern, we uncover the user's browsing intent through n-grams and Collocation methods. An innovative clustering technique is constructed through the Expectation-Maximization algorithm with Gaussian Mixture Model. We discuss a framework for predicting a user's clicks based on the past click sequences through higher order Markov Chains. We developed our model on top of a big data Lambda Architecture which combines high throughput Hadoop batch setup with low latency real-time framework over a large distributed cluster. Based on this approach, we developed an experimental setup for an optimized Storm topology and enhanced Cassandra database latency to achieve real-time responses. The theoretical claims are corroborated with several evaluations in Microsoft Azure HDInsight Apache Storm deployment and in the Datastax distribution of Cassandra. The paper demonstrates that the proposed techniques help user experience optimization, building recently viewed products list, market-driven analyses, and allocation of website resources. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13895753
Volume :
23
Issue :
3
Database :
Complementary Index
Journal :
Electronic Commerce Research
Publication Type :
Academic Journal
Accession number :
172313562
Full Text :
https://doi.org/10.1007/s10660-021-09518-4