Back to Search
Start Over
Hydrolase mimic via second coordination sphere engineering in metal-organic frameworks for environmental remediation.
- Source :
- Nature Communications; 4/20/2023, Vol. 14 Issue 1, p1-13, 13p
- Publication Year :
- 2023
-
Abstract
- Enzymes achieve high catalytic activity with their elaborate arrangements of amino acid residues in confined optimized spaces. Nevertheless, when exposed to complicated environmental implementation scenarios, including high acidity, organic solvent and high ionic strength, enzymes exhibit low operational stability and poor activity. Here, we report a metal-organic frameworks (MOFs)-based artificial enzyme system via second coordination sphere engineering to achieve high hydrolytic activity under mild conditions. Experiments and theoretical calculations reveal that amide cleavage catalyzed by MOFs follows two distinct catalytic mechanisms, Lewis acid- and hydrogen bonding-mediated hydrolytic processes. The hydrogen bond formed in the secondary coordination sphere exhibits 11-fold higher hydrolytic activity than the Lewis acidic zinc ions. The MOFs exhibit satisfactory degradation performance of toxins and high stability under extreme working conditions, including complicated fermentation broth and high ethanol environments, and display broad substrate specificity. These findings hold great promise for designing artificial enzymes for environmental remediation.Enzymatic degradation of pollutants under mild conditions is promising for efficient degradation of environmental contaminants under facile operation conditions, but natural enzymes tend to lose enzymatic activity in environmental application scenarios. Here, the authors report a metal-organic frameworks-based artificial enzyme system to achieve high hydrolytic activity under mild conditions. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 14
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- 172337782
- Full Text :
- https://doi.org/10.1038/s41467-023-41716-6