Back to Search Start Over

A Radiomic-Based Machine Learning System to Diagnose Age-Related Macular Degeneration from Ultra-Widefield Fundus Retinography.

Authors :
Interlenghi, Matteo
Sborgia, Giancarlo
Venturi, Alessandro
Sardone, Rodolfo
Pastore, Valentina
Boscia, Giacomo
Landini, Luca
Scotti, Giacomo
Niro, Alfredo
Moscara, Federico
Bandi, Luca
Salvatore, Christian
Castiglioni, Isabella
Source :
Diagnostics (2075-4418); Sep2023, Vol. 13 Issue 18, p2965, 18p
Publication Year :
2023

Abstract

The present study was conducted to investigate the potential of radiomics to develop an explainable AI-based system to be applied to ultra-widefield fundus retinographies (UWF-FRTs) with the objective of predicting the presence of the early signs of Age-related Macular Degeneration (AMD) and stratifying subjects with low- versus high-risk of AMD. The ultimate aim was to provide clinicians with an automatic classifier and a signature of objective quantitative image biomarkers of AMD. The use of Machine Learning (ML) and radiomics was based on intensity and texture analysis in the macular region, detected by a Deep Learning (DL)-based macular detector. Two-hundred and twenty six UWF-FRTs were retrospectively collected from two centres and manually annotated to train and test the algorithms. Notably, the combination of the ML-based radiomics model and the DL-based macular detector reported 93% sensitivity and 74% specificity when applied to the data of the centre used for external testing, capturing explainable features associated with drusen or pigmentary abnormalities. In comparison to the human operator's annotations, the system yielded a 0.79 Cohen κ, demonstrating substantial concordance. To our knowledge, these results are the first provided by a radiomic approach for AMD supporting the suitability of an explainable feature extraction method combined with ML for UWF-FRT. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20754418
Volume :
13
Issue :
18
Database :
Complementary Index
Journal :
Diagnostics (2075-4418)
Publication Type :
Academic Journal
Accession number :
172416341
Full Text :
https://doi.org/10.3390/diagnostics13182965