Back to Search
Start Over
Corn Harvester Bearing Fault Diagnosis Based on ABC-VMD and Optimized EfficientNet.
- Source :
- Entropy; Sep2023, Vol. 25 Issue 9, p1273, 18p
- Publication Year :
- 2023
-
Abstract
- The extraction of the optimal mode of the bearing signal in the drive system of a corn harvester is a challenging task. In addition, the accuracy and robustness of the fault diagnosis model are low. Therefore, this paper proposes a fault diagnosis method that uses the optimal mode component as the input feature. The vibration signal is first decomposed by variational mode decomposition (VMD) based on the optimal parameters searched by the artificial bee colony (ABC). Moreover, the key components are screened using an evaluation function that is a fusion of the arrangement entropy, the signal-to-noise ratio, and the power spectral density weighting. The Stockwell transform is then used to convert the filtered modal components into time–frequency images. Finally, the MBConv quantity and activation function of the EfficientNet network are optimized, and the time–frequency pictures are imported into the optimized network model for fault diagnosis. The comparative experiments show that the proposed method accurately extracts the optimal modal component and has a fault classification accuracy greater than 98%. [ABSTRACT FROM AUTHOR]
- Subjects :
- FAULT diagnosis
SIGNAL-to-noise ratio
DIAGNOSIS methods
ENTROPY
Subjects
Details
- Language :
- English
- ISSN :
- 10994300
- Volume :
- 25
- Issue :
- 9
- Database :
- Complementary Index
- Journal :
- Entropy
- Publication Type :
- Academic Journal
- Accession number :
- 172417201
- Full Text :
- https://doi.org/10.3390/e25091273