Back to Search Start Over

Comparative efficacy of Parthenium hysterophorus (L.) derived biochar and iron doped zinc oxide nanoparticle on heavy metals (HMs) mobility and its uptake by Triticum aestivum (L.) in chromite mining contaminated soils.

Authors :
Jehan, Shah
Khattak, Seema A.
Khan, Sardar
Ali, Liaqat
Waqas, Muhammad
Kamran, Asad
Source :
International Journal of Phytoremediation; 2023, Vol. 25 Issue 14, p1890-1900, 11p
Publication Year :
2023

Abstract

In this study we investigated the efficacy of a novel material parthenium weed (Parthenium hysterophorus L.) biochar (PBC), iron doped zinc oxide nanoparticles (nFe-ZnO), and biochar modified with nFe-ZnO (Fe-ZnO@BC) to adsorb heavy metals (HMs) and reduce their uptake by wheat (Triticum aestivum L.) in a highly chromite mining contaminated soil. The co-application of the applied soil conditioners exhibited a positive effect on the immobilization and restricted the HMs uptake below their threshold levels in shoot content of wheat. The maximum adsorption capacity was because of large surface area, cation exchange capacity, surface precipitation, and complexation of the soil conditioners. The scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) showed porous smooth structure of parthenium weed derived biochar that helped in HMs adsorption, increase the efficiency of soil fertilizers and nutrients retention which help in the enhancement soil condition. Under different application rates the highest translocation factor (TFHMs) was obtained at 2 g nFe-ZnO rate followed the descending order: Mn > Cr > Cu > Ni > Pb. The overall TFHMs was found <1.0 indicating that low content of HMs accumulation in roots from soil slight transferred to shoot, thus satisfying the remediation requirements. Wheat is considered as an important staple food which is grown in a chromite mining contaminated soil containing toxic HMs releasing from weathering of mafic and ultramafic rocks in the study area. The present research work is significantly beneficial in identifying the efficiency of treatment technologies to immobilize toxic HMs in soil. Parthenium weed derived biochar and biochar modified with nFe-ZnO (Fe-ZnO@BC) reduce the HMs uptake by wheat plant. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15226514
Volume :
25
Issue :
14
Database :
Complementary Index
Journal :
International Journal of Phytoremediation
Publication Type :
Academic Journal
Accession number :
173489379
Full Text :
https://doi.org/10.1080/15226514.2023.2204968