Back to Search Start Over

Deciphering the Degradation Mechanism of High‐Rate and High‐Energy‐Density Lithium–Sulfur Pouch Cells.

Authors :
Cheng, Qian
Chen, Zi‐Xian
Li, Xi‐Yao
Bi, Chen‐Xi
Sun, Furong
Zhang, Xue‐Qiang
Ma, Xinzhi
Li, Bo‐Quan
Huang, Jia‐Qi
Source :
Advanced Energy Materials; 11/10/2023, Vol. 13 Issue 42, p1-8, 8p
Publication Year :
2023

Abstract

Lithium–sulfur (Li–S) batteries are widely regarded as promising next‐generation battery systems due to their impressive theoretical energy density of 2600 Wh kg−1. However, practical high‐energy‐density Li–S pouch cells suffer from rapid performance degradation under high working rates. Herein, the performance degradation mechanism of 400 Wh kg−1 Li–S pouch cells is systematically investigated under a high cycling rate of 0.2 C. Focusing on the reduced specific capacity and increased cell polarization, the sluggish cathodic sulfur redox kinetics under lean‐electrolyte and high‐rate conditions is identified as the main limitation. Further polarization decoupling indicates the cathodic activation polarization contributes dominantly to the increased cell polarization. Accordingly, a delicately designed electrolyte using dimethyl diselenide as the kinetic promoter is proposed to enable the Li–S pouch cells to work at 0.2 C with reduced cell polarization. This work clarifies the sluggish cathodic interfacial charge transfer kinetics as the main challenge for high‐energy‐density Li–S batteries at high rates and is expected to inspire rational strategy design for achieving advanced Li–S batteries. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16146832
Volume :
13
Issue :
42
Database :
Complementary Index
Journal :
Advanced Energy Materials
Publication Type :
Academic Journal
Accession number :
173551911
Full Text :
https://doi.org/10.1002/aenm.202301770