Back to Search Start Over

Learning ADC maps from accelerated radial k‐space diffusion‐weighted MRI in mice using a deep CNN‐transformer model.

Authors :
Li, Yuemeng
Joaquim, Miguel Romanello
Pickup, Stephen
Song, Hee Kwon
Zhou, Rong
Fan, Yong
Source :
Magnetic Resonance in Medicine; Jan2024, Vol. 91 Issue 1, p105-117, 13p
Publication Year :
2024

Abstract

Purpose: To accelerate radially sampled diffusion weighted spin‐echo (Rad‐DW‐SE) acquisition method for generating high quality ADC maps. Methods: A deep learning method was developed to generate accurate ADC maps from accelerated DWI data acquired with the Rad‐DW‐SE method. The deep learning method integrates convolutional neural networks (CNNs) with vision transformers to generate high quality ADC maps from accelerated DWI data, regularized by a monoexponential ADC model fitting term. A model was trained on DWI data of 147 mice and evaluated on DWI data of 36 mice, with acceleration factors of 4× and 8× compared to the original acquisition parameters. Results: Ablation studies and experimental results have demonstrated that the proposed deep learning model generates higher quality ADC maps from accelerated DWI data than alternative deep learning methods under comparison when their performance is quantified in whole images as well as in regions of interest, including tumors, kidneys, and muscles. Conclusions: The deep learning method with integrated CNNs and transformers provides an effective means to accurately compute ADC maps from accelerated DWI data acquired with the Rad‐DW‐SE method. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
07403194
Volume :
91
Issue :
1
Database :
Complementary Index
Journal :
Magnetic Resonance in Medicine
Publication Type :
Academic Journal
Accession number :
173604467
Full Text :
https://doi.org/10.1002/mrm.29833