Back to Search Start Over

Unistrand piRNA clusters are an evolutionarily conserved mechanism to suppress endogenous retroviruses across the Drosophila genus.

Authors :
van Lopik, Jasper
Alizada, Azad
Trapotsi, Maria-Anna
Hannon, Gregory J.
Bornelöv, Susanne
Czech Nicholson, Benjamin
Source :
Nature Communications; 11/14/2023, Vol. 14 Issue 1, p1-17, 17p
Publication Year :
2023

Abstract

The PIWI-interacting RNA (piRNA) pathway prevents endogenous genomic parasites, i.e. transposable elements, from damaging the genetic material of animal gonadal cells. Specific regions in the genome, called piRNA clusters, are thought to define each species' piRNA repertoire and therefore its capacity to recognize and silence specific transposon families. The unistrand cluster flamenco (flam) is essential in the somatic compartment of the Drosophila ovary to restrict Gypsy-family transposons from infecting the neighbouring germ cells. Disruption of flam results in transposon de-repression and sterility, yet it remains unknown whether this silencing mechanism is present more widely. Here, we systematically characterise 119 Drosophila species and identify five additional flam-like clusters separated by up to 45 million years of evolution. Small RNA-sequencing validated these as bona-fide unistrand piRNA clusters expressed in somatic cells of the ovary, where they selectively target transposons of the Gypsy family. Together, our study provides compelling evidence of a widely conserved transposon silencing mechanism that co-evolved with virus-like Gypsy-family transposons. To control transposable elements, fruit flies rely on distinct genomic regions called piRNA clusters. Here, new piRNA clusters were identified across diverse Drosophila species, displaying a conserved and specialised role in the control of endogenous retroviruses in ovarian somatic cells. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
14
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
173624170
Full Text :
https://doi.org/10.1038/s41467-023-42787-1