Back to Search Start Over

The role of primed and non-primed MSC-derived conditioned media in neuroregeneration.

Authors :
Hudakova, Nikola
Mudronova, Dagmar
Marcincakova, Dana
Slovinska, Lucia
Majerova, Petra
Maloveska, Marcela
Petrouskova, Patricia
Humenik, Filip
Cizkova, Dasa
Source :
Frontiers in Molecular Neuroscience; 2023, p01-15, 15p
Publication Year :
2023

Abstract

Introduction: With growing significance in nervous system repair, mesenchymal stem cell-derived conditioned media (MSCCM) have been used in cell-free therapies in regenerative medicine. However, the immunomodulatory and neuroregenerative effects of MSCCM and the influence of priming on these effects are still poorly understood. Methods: In this study, by various methods focused on cell viability, proliferation, neuron-like differentiation, neurite outgrowth, cell migration and regrowth, we demonstrated that MSCCM derived from adipose tissue (AT-MSCCM) and amniotic membrane (AM-MSCCM) had different effects on SH-SY5Y cells. Results and discussion: AT-MSCCM was found to have a higher proliferative capacity and the ability to impact neurite outgrowth during differentiation, while AM-MSCCM showed more pronounced immunomodulatory activity, migration, and re-growth of SH-SY5Y cells in the scratch model. Furthermore, priming of MSC with pro-inflammatory cytokine (IFN-γ) resulted in different proteomic profiles of conditioned media from both sources, which had the highest effect on SH-SY5Y proliferation and neurite outgrowth in terms of the length of neurites (pAT-MSCCM) compared to the control group (DMEM). Altogether, our results highlight the potential of primed and non-primed MSCCM as a therapeutic tool for neurodegenerative diseases, although some differences must be considered. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16625099
Database :
Complementary Index
Journal :
Frontiers in Molecular Neuroscience
Publication Type :
Academic Journal
Accession number :
173634290
Full Text :
https://doi.org/10.3389/fnmol.2023.1241432