Back to Search Start Over

Unveiling the anticancer potentiality of single cell oils produced by marine oleaginous Paradendryphiella sp. under optimized economic growth conditions.

Authors :
El-Shall, Hadeel
Abu‑Serie, Marwa
Abu-Elreesh, Gadallah
Eltarahony, Marwa
Source :
Scientific Reports; 11/26/2023, Vol. 13 Issue 1, p1-16, 16p
Publication Year :
2023

Abstract

Bioprospecting about new marine oleaginous fungi that produce advantageous bioproducts in a green sustainable process is the key of blue bioeconomy. Herein, the marine Paradendryphiella sp. was utilized for single cell oils (SCOs) production economically, via central composite design, the lipid content enhanced 2.2-fold by 5.5 g/L lipid yeild on seawater-based media supplemented with molasses concentration 50 g/L, yeast extract, 2.25 g/L at initial pH value (5.3) and 8 days of static incubation. Subsequently, the fatty acid methyl esters profiles of SCOs produced on optimized media under different abiotic conditions were determined; signifying qualitative and quantitative variations. Interestingly, the psychrophilic-prolonged incubation increased the unsaturation level of fatty acids to 59.34%, while ω-6 and ω-3 contents representing 23.53% and 0.67% respectively. Remarkably, it exhibited the highest EC<subscript>100</subscript> dose by 677.03 µg/mL on normal human lung fibroblast Wi-38 cells. Meanwhile, it showed the highest inhibiting proliferation potential on cancer cell lines of A549, MDA-MB 231 and HepG-2 cells by 372.37, 417.48 and 365.00 µg/mL, respectively. Besides, it elevated the oxidative stress, the expression of key apoptotic genes and suppressed the expression of key oncogenes (NF-κB, BCL2 and cyclin D); implying its promising efficacy in cancer treatment as adjuvant drug. This study denoted the lipogenesis capacity of Paradendryphiella sp. under acidic/alkaline and psychrophilic/mesophilic conditions. Hereby attaining efficient and economic process under seasonal variation with different Egyptian marine sources to fill the gap of freshwater crisis and simultaneously preserve energy. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Complementary Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
173821813
Full Text :
https://doi.org/10.1038/s41598-023-47656-x