Back to Search Start Over

Development of Bioactive Scaffolds for Orthopedic Applications by Designing Additively Manufactured Titanium Porous Structures: A Critical Review.

Authors :
Kiselevskiy, Mikhail V.
Anisimova, Natalia Yu.
Kapustin, Alexei V.
Ryzhkin, Alexander A.
Kuznetsova, Daria N.
Polyakova, Veronika V.
Enikeev, Nariman A.
Source :
Biomimetics (2313-7673); Nov2023, Vol. 8 Issue 7, p546, 25p
Publication Year :
2023

Abstract

We overview recent findings achieved in the field of model-driven development of additively manufactured porous materials for the development of a new generation of bioactive implants for orthopedic applications. Porous structures produced from biocompatible titanium alloys using selective laser melting can present a promising material to design scaffolds with regulated mechanical properties and with the capacity to be loaded with pharmaceutical products. Adjusting pore geometry, one could control elastic modulus and strength/fatigue properties of the engineered structures to be compatible with bone tissues, thus preventing the stress shield effect when replacing a diseased bone fragment. Adsorption of medicals by internal spaces would make it possible to emit the antibiotic and anti-tumor agents into surrounding tissues. The developed internal porosity and surface roughness can provide the desired vascularization and osteointegration. We critically analyze the recent advances in the field featuring model design approaches, virtual testing of the designed structures, capabilities of additive printing of porous structures, biomedical issues of the engineered scaffolds, and so on. Special attention is paid to highlighting the actual problems in the field and the ways of their solutions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23137673
Volume :
8
Issue :
7
Database :
Complementary Index
Journal :
Biomimetics (2313-7673)
Publication Type :
Academic Journal
Accession number :
173825454
Full Text :
https://doi.org/10.3390/biomimetics8070546