Back to Search Start Over

Passive Electrical and Optical Methods of Ultra-Short Pulse Expansion for Event Timer-Based TDC in PPM Receiver.

Authors :
Aboltins, Arturs
Solovjova, Tatjana
Semenako, Janis
Kusnins, Romans
Migla, Sandis
Sics, Pauls Eriks
Selis, Oskars
Tihomorskis, Nikolajs
Prigunovs, Dmitrijs
Ostrovskis, Armands
Spolitis, Sandis
Source :
Electronics (2079-9292); Nov2023, Vol. 12 Issue 22, p4634, 20p
Publication Year :
2023

Abstract

The energy efficiency of a communication system using pulse position modulation (PPM) can be increased by reducing the duration of the pulses transmitted over the communication channel to several tens of picoseconds. The employment of an event timer device as a time-to-digital converter (TDC) for demodulation allows the use of PPM with many pulse positions and achieves competitive data transfer speeds. However, along with several-picosecond accuracy of modern event timers, they require a pulse duration of several hundred picoseconds for precise detection. This research is devoted to developing passive techniques for precise pulse expansion from tens of picoseconds to hundreds of picoseconds. We propose two methods: the electrical method, which employs a microstrip low-pass filter (LPF), and the optical method, which uses fiber Bragg grating (FBG). This research offers a detailed analysis of distortion-free pulse expansion requirements, the design of prototypes meeting these requirements, and experimental design verification. Theoretical background, mathematical models, and results of experimental validation of the proposed pulse expansion methods within the laboratory transmitted reference pulse-position modulation (TR-PPM) communication system are provided. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20799292
Volume :
12
Issue :
22
Database :
Complementary Index
Journal :
Electronics (2079-9292)
Publication Type :
Academic Journal
Accession number :
173830701
Full Text :
https://doi.org/10.3390/electronics12224634