Back to Search Start Over

Discovery of Guanfacine as a Novel TAAR1 Agonist: A Combination Strategy through Molecular Modeling Studies and Biological Assays.

Authors :
Cichero, Elena
Francesconi, Valeria
Casini, Beatrice
Casale, Monica
Kanov, Evgeny
Gerasimov, Andrey S.
Sukhanov, Ilya
Savchenko, Artem
Espinoza, Stefano
Gainetdinov, Raul R.
Tonelli, Michele
Source :
Pharmaceuticals (14248247); Nov2023, Vol. 16 Issue 11, p1632, 27p
Publication Year :
2023

Abstract

Trace amine-associated receptor 1 (TAAR1) is an attractive target for the design of innovative drugs to be applied in diverse pharmacological settings. Due to a non-negligible structural similarity with endogenous ligands, most of the agonists developed so far resulted in being affected by a low selectivity for TAAR1 with respect to other monoaminergic G protein-coupled receptors, like the adrenoreceptors. This study utilized comparative molecular docking studies and quantitative–structure activity relationship (QSAR) analyses to unveil key structural differences between TAAR1 and alpha2-adrenoreceptor (α<subscript>2</subscript>-ADR), with the aim to design novel TAAR1 agonists characterized by a higher selectivity profile and reduced off-target effects. While the presence of hydrophobic motives is encouraged towards both the two receptors, the introduction of polar/positively charged groups and the ligand conformation deeply affect the TAAR1 or α<subscript>2</subscript>-ADR putative selectivity. These computational methods allowed the identification of the α<subscript>2</subscript>A-ADR agonist guanfacine as an attractive TAAR1-targeting lead compound, demonstrating nanomolar activity in vitro. In vivo exploration of the efficacy of guanfacine showed that it is able to decrease the locomotor activity of dopamine transporter knockout (DAT-KO) rats. Therefore, guanfacine can be considered as an interesting template molecule worthy of structural optimization. The dual activity of guanfacine on both α<subscript>2</subscript>-ADR and TAAR1 signaling and the related crosstalk between the two pathways will deserve more in-depth investigation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248247
Volume :
16
Issue :
11
Database :
Complementary Index
Journal :
Pharmaceuticals (14248247)
Publication Type :
Academic Journal
Accession number :
173864790
Full Text :
https://doi.org/10.3390/ph16111632