Back to Search Start Over

Improving the STARFM Fusion Method for Downscaling the SSEBOP Evapotranspiration Product from 1 km to 30 m in an Arid Area in China.

Authors :
Sun, Jingjing
Wang, Wen
Wang, Xiaogang
Brocca, Luca
Source :
Remote Sensing; Nov2023, Vol. 15 Issue 22, p5411, 19p
Publication Year :
2023

Abstract

Continuous evapotranspiration (ET) data with high spatial resolution are crucial for water resources management in irrigated agricultural areas in arid regions. Many global ET products are available now but with a coarse spatial resolution. Spatial-temporal fusion methods, such as the spatial and temporal adaptive reflectance fusion model (STARFM), can help to downscale coarse spatial resolution ET products. In this paper, the STARFM model is improved by incorporating the temperature vegetation dryness index (TVDI) into the data fusion process, and we propose a spatial and temporal adaptive evapotranspiration downscaling method (STAEDM). The modified method STAEDM was applied to the 1 km SSEBOP ET product to derive a downscaled 30 m ET for irrigated agricultural fields of Northwest China. The STAEDM exhibits a significant improvement compared to the original STARFM method for downscaling SSEBOP ET on Landsat-unavailable dates, with an increase in the squared correlation coefficients (r<superscript>2</superscript>) from 0.68 to 0.77 and a decrease in the root mean square error (RMSE) from 10.28 mm/10 d to 8.48 mm/10 d. The ET based on the STAEDM additionally preserves more spatial details than STARFM for heterogeneous agricultural fields and can better capture the ET seasonal dynamics. The STAEDM ET can better capture the temporal variation of 10-day ET during the whole crop growing season than SSEBOP. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
22
Database :
Complementary Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
173867192
Full Text :
https://doi.org/10.3390/rs15225411