Back to Search Start Over

Modelling crop hail damage footprints with single-polarization radar: The roles of spatial resolution, hail intensity, and cropland density.

Authors :
Portmann, Raphael
Schmid, Timo
Villiger, Leonie
Bresch, David N.
Calanca, Pierluigi
Source :
EGUsphere; 12/5/2023, p1-29, 29p
Publication Year :
2023

Abstract

Hail remains a major threat to agriculture in Switzerland and beyond and assessments of current and future hail risk are of paramount importance for decision-making in the insurance industry and the agricultural sector. However, relating observational information on hail with crop-specific damages is challenging. Here, we build and systematically assess a model to predict hail damage footprints for field crops (wheat, maize, barley, rapeseed) and grapevine from the operational radar product Maximum Expected Severe Hail Size (MESHS) at different spatial resolutions. To this end, we combine the radar information with detailed geospatial information on agricultural land use and geo-referenced damage data from a crop insurer for 12 recent hail events in Switzerland. We find that for field crops, model skill gradually increases when the spatial resolution is reduced from 1 km down to 8 km. For even lower resolutions, the skill is diminished again. On the contrary, for grapevine, a lower model resolution tends to reduce skill, which is attributed to the different spatial distribution of field crops and grapevine in the landscape. It is shown that identifying a suitable MESHS thresholds to model damage footprints always involves trade-offs. For the lowest possible MESHS threshold (20 mm) the model predicts damage about two times too often (high frequency bias and number of false alarms) but also has a high probability of detection (80 %). The frequency bias decreases for larger thresholds and reaches an optimal value close to 1 for MESHS thresholds of 30–40 mm. However, this comes at the cost of a substantially lower probability of detection (around 50 %) while overall model skill remains largely unchanged. We argue that, ultimately, the best threshold selection therefore depends on the user need and the costs of a false alarm or a missed event. Finally, the frequency of false alarms can be substantially reduced when only areas with high cropland density are considered. Results from this simple, open-source model show that modelling of hail damage footprints to crops from single-polarization radar in Switzerland is skillful and is best done at 8 km resolution for field crops and 1 km for grapevine. They further allow different users of such models to identify the suitable threshold for their application, taking into account associated trade-offs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
Database :
Complementary Index
Journal :
EGUsphere
Publication Type :
Academic Journal
Accession number :
174017609
Full Text :
https://doi.org/10.5194/egusphere-2023-2598