Back to Search Start Over

Layer-optimized SAR processing with a mobile phase-sensitive radar for detecting the deep englacial stratigraphy of Colle Gnifetti, Switzerland/Italy.

Authors :
Oraschewski, Falk M.
Koch, Inka
Ershadi, M. Reza
Hawkins, Jonathan
Eisen, Olaf
Drews, Reinhard
Source :
Cryosphere Discussions; 12/13/2023, p1-21, 21p
Publication Year :
2023

Abstract

Radio-echo sounding is a standard technique for imaging the englacial stratigraphy of glaciers and ice sheets. In most cases, internal reflection horizons (IRHs) represent former glacier surfaces and comprise information about past accumulation, ice deformation and allow to link ice core chronologies. IRHs in the lower third of the ice column are often difficult to detect or coherently trace. In the polar ice sheets, progress in IRH detection has been made by using multistatic, phase coherent radars, enabling synthetic-aperture radar (SAR) processing. However, these radar systems are often not suitable for deployment on mountain glaciers. We present a proof-of-concept study for a lightweight, phase-coherent, and ground-based radar system, based on the phase-sensitive radio echo-sounder (pRES). To improve the detectability of IRHs we additionally adapted a layer-optimized SAR (LO-SAR) processing scheme to this setup. We showcase the system capability at Colle Gnifetti, Switzerland/Italy, and detect significantly deeper and older IRHs compared to previously deployed pulsed radar sys tems. Continuous IRHs are now apparent down to the base of the glacier. Corresponding reflection mechanisms for this glacier are linked to a stratified acidic impurity which was deposited at a higher rate due to increased industrial activity in the area. Possible improvements of the system are discussed. If successfully implemented, these may provide a new way to map the deep internal structure of Colle Gnifetti and other mountain glaciers more extensively in future deployments. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19940432
Database :
Complementary Index
Journal :
Cryosphere Discussions
Publication Type :
Academic Journal
Accession number :
174313959
Full Text :
https://doi.org/10.5194/egusphere-2023-2731