Back to Search Start Over

Breath Analysis for Lung Cancer Early Detection—A Clinical Study.

Authors :
Jia, Zhunan
Thavasi, Velmurugan
Venkatesan, Thirumalai
Lee, Pyng
Source :
Metabolites (2218-1989); Dec2023, Vol. 13 Issue 12, p1197, 11p
Publication Year :
2023

Abstract

This clinical study presents a comprehensive investigation into the utility of breath analysis as a non-invasive method for the early detection of lung cancer. The study enrolled 14 lung cancer patients, 14 non-lung cancer controls with diverse medical conditions, and 3 tuberculosis (TB) patients for biomarker discovery. Matching criteria including age, gender, smoking history, and comorbidities were strictly followed to ensure reliable comparisons. A systematic breath sampling protocol utilizing a BIO-VOC sampler was employed, followed by VOC analysis using Thermal Desorption–Gas Chromatography–Mass Spectrometry (TD-GC/MS). The resulting VOC profiles were subjected to stringent statistical analysis, including Orthogonal Projections to Latent Structures—Discriminant Analysis (OPLS-DA), Kruskal–Wallis test, and Receiver Operating Characteristic (ROC) analysis. Notably, 13 VOCs exhibited statistically significant differences between lung cancer patients and controls. The combination of eight VOCs (hexanal, heptanal, octanal, benzaldehyde, undecane, phenylacetaldehyde, decanal, and benzoic acid) demonstrated substantial discriminatory power with an area under the curve (AUC) of 0.85, a sensitivity of 82%, and a specificity of 76% in the discovery set. Validation in an independent cohort yielded an AUC of 0.78, a sensitivity of 78%, and a specificity of 64%. Further analysis revealed that elevated aldehyde levels in lung cancer patients' breath could be attributed to overactivated Alcohol Dehydrogenase (ADH) pathways in cancerous tissues. Addressing methodological challenges, this study employed a matching of physiological and pathological confounders, controlled room air samples, and standardized breath sampling techniques. Despite the limitations, this study's findings emphasize the potential of breath analysis as a diagnostic tool for lung cancer and suggest its utility in differentiating tuberculosis from lung cancer. However, further research and validation are warranted for the translation of these findings into clinical practice. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22181989
Volume :
13
Issue :
12
Database :
Complementary Index
Journal :
Metabolites (2218-1989)
Publication Type :
Academic Journal
Accession number :
174465114
Full Text :
https://doi.org/10.3390/metabo13121197