Back to Search Start Over

Characteristics of Inter-System Bias between BDS-2 and BDS-3 and Its Impact on BDS Orbit and Clock Solutions.

Authors :
Xu, Xiaolong
Cai, Zhan
Source :
Remote Sensing; Dec2023, Vol. 15 Issue 24, p5659, 19p
Publication Year :
2023

Abstract

The inter-system-like bias between the regional (BDS-2) and global (BDS-3) constellation of the BeiDou Navigation Satellite System (BDS) has been identified on common B1I pseudo-range observations. In this study, its characteristics are investigated with tracking data from the International GNSS Service (IGS) and International GNSS Monitoring and Assessment System (iGMAS) network. Firstly, the satellite-specific inter-system-like bias is calculated and the dependency on satellite is observed. Clearly noticeable discrepancies on BDS-2 and BDS-3 can be identified. Hence, the constellation-specific inter-system-like bias is estimated. Biases for all receivers are quite stable, with standard derivation (STDev) less than 0.2 m in average. The bias shows clear dependence on the receiver, while the firmware and antenna have limited but not negligible impacts, particularly for Trimble NetR9 and Alloy receivers. The Trimble NetR9 with TRM59800.00 antenna shows noticeable discrepancy up to about 1.5 m with different antenna, and the bias of the Trimble Alloy 5.37 jumps about 2.4 m with respect to later firmware. In addition, clear annual variations are observed for stations ABPO and MIZU with Septentrio POLARX5 5.3.2 and ASTERX4 4.4.2 receivers, respectively. Furthermore, the impacts of the biases on the BDS orbit and clock solutions are analyzed. Once BDS-2 and BDS-3 are treated as two independent systems, the root mean square (RMS) of code and carrier phase residuals can be reduced by around 9.3 cm and 0.23 mm, respectively, while the three-dimensional orbit consistency is improved by 6.8%, mainly in the tracking direction. Satellite laser ranging (SLR) shows marginal impacts on IGSO and MEO satellites. However, the SLR residual of C01 shifts −13.2 cm, resulting in a smaller RMS value. In addition, the RMS of linear clock fitting is reduced from 0.050 ns to 0.038 ns for BDS-3 MEO satellites in average. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
24
Database :
Complementary Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
174465289
Full Text :
https://doi.org/10.3390/rs15245659