Back to Search
Start Over
Giant adiabatic temperature change and its direct measurement of a barocaloric effect in a charge-transfer solid.
- Source :
- Nature Communications; 12/27/2023, Vol. 14 Issue 1, p1-12, 12p
- Publication Year :
- 2023
-
Abstract
- Solid refrigerants exhibiting a caloric effect upon applying external stimuli are receiving attention as one of the next-generation refrigeration technologies. Herein, we report a new inorganic refrigerant, rubidium cyano-bridged manganese–iron–cobalt ternary metal assembly (cyano-RbMnFeCo). Cyano-RbMnFeCo shows a reversible barocaloric effect with large reversible adiabatic temperature changes of 74 K (from 57 °C to −17 °C) at 340 MPa, and 85 K (from 88 °C to 3 °C) at 560 MPa. Such large reversible adiabatic temperature changes have yet to be reported among caloric effects in solid–solid phase transition refrigerants. The reversible refrigerant capacity is 26000 J kg<superscript>−1</superscript> and the temperature window is 142 K. Additionally, cyano-RbMnFeCo shows barocaloric effects even at low pressures, e.g., reversible adiabatic temperature change is 21 K at 90 MPa. Furthermore, direct measurement of the temperature change using a thermocouple shows +44 K by applying pressure. The temperature increase and decrease upon pressure application and release are repeated over 100 cycles without any degradation of the performance. This material series also possesses a high thermal conductivity value of 20.4 W m<superscript>−1</superscript> K<superscript>−1</superscript>. The present barocaloric material may realize a high-efficiency solid refrigerant. Cyano-RbMnFeCo shows a large barocaloric effect with reversible adiabatic temperature changes of 74 K (340 MPa) and 85 K (560 MPa). Here, the authors observe temperature change of +44 K (440 MPa), stable after repeating over 100 times. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 14
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- 174472522
- Full Text :
- https://doi.org/10.1038/s41467-023-44350-4