Back to Search Start Over

Thermodynamic and Dynamic Components of Winter Temperature Changes in Western Canada, 1950-2020.

Authors :
NEWTON, BRANDI
SAYANDA, DIOGO
BONSAL, BARRIE
Source :
Journal of Climate; Jan2024, Vol. 37 Issue 2, p719-734, 16p
Publication Year :
2024

Abstract

Most of the globe has experienced significant warming trends that have been attributed to anthropogenic climate change. However, these rates of warming are also influenced by short-term climate fluctuations driven by atmospheric circulation dynamics, resulting in inconsistent trend magnitudes in both time and space. This research evaluated winter (December-February) temperature trends over 1950-2020 at 91 climate stations across British Columbia (BC), Alberta (AB), and Saskatchewan (SK), Canada, and determined the components attributed to thermodynamic and dynamic (atmospheric circulation) factors. A synoptic climatological approach was used to classify atmospheric circulation patterns in the midtroposphere, relate those patterns to surface temperature, and evaluate changes in frequency. Moderate to high temperature increases over 71 years were found for most of the region, averaging 3.18C in southern SK to 4.1℃ in central-northern AB, and a maximum of 5.8℃ in northern BC. Low to moderate increases were found for southern BC, averaging 1.2℃. Changes in atmospheric circulation accounted for 29% and 31% of observed temperature changes in central-northern BC and AB, respectively. Dynamic factors were a moderate driver in southern AB (18%) and central-northern SK (13%), and low in southern SK (5%). Negative dynamic contributions in southern BC (-6%), suggest that atmospheric circulation changes counteracted thermodynamically driven temperature changes. Results were consistent with trend analyses, indicating this method is well suited for trend detection and identification of thermodynamic and dynamic drivers. Results of this research improve our understanding of the magnitude of winter temperature changes critical for informing adaptation and climate-related policy decisions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08948755
Volume :
37
Issue :
2
Database :
Complementary Index
Journal :
Journal of Climate
Publication Type :
Academic Journal
Accession number :
174539643
Full Text :
https://doi.org/10.1175/JCLI-D-23-0138.1