Back to Search
Start Over
Modeling Seasonal Malaria Transmission: A Methodology Connecting Regional Temperatures to Mosquito and Parasite Developmental Traits.
- Source :
- Letters in Biomathematics; 2023, Vol. 10 Issue 1, p3-27, 25p
- Publication Year :
- 2023
-
Abstract
- Increasing temperatures have raised concerns over the potential effect on disease spread. Temperature is a well known factor affecting mosquito population dynamics and the development rate of the malaria parasite within the mosquito, and consequently, malaria transmission. A sinusoidal wave is commonly used to incorporate temperature effects in malaria models, however, we introduce a seasonal malaria framework that links data on temperature-dependent mosquito and parasite demographic traits to average monthly regional temperature data, without forcing a sinusoidal fit to the data. We introduce a spline methodology that maps temperature-dependent mosquito traits to time-varying model parameters. The resulting non-autonomous system of differential equations is used to study the impact of seasonality on malaria transmission dynamics and burden in a high and low malaria transmission region in Malawi. We present numerical simulations illustrating how temperature shifts alter the entomological inoculation rate and the number of malaria infections in these regions. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 23737867
- Volume :
- 10
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Letters in Biomathematics
- Publication Type :
- Academic Journal
- Accession number :
- 174902829