Back to Search Start Over

Modeling Seasonal Malaria Transmission: A Methodology Connecting Regional Temperatures to Mosquito and Parasite Developmental Traits.

Authors :
Prosper, Olivia
Gurski,b, Katharine
Teboh-Ewungkem, Miranda I.
Peace, Angela
Zhilan Feng
Reynolds, Margaret
Manore, Carrie
Source :
Letters in Biomathematics; 2023, Vol. 10 Issue 1, p3-27, 25p
Publication Year :
2023

Abstract

Increasing temperatures have raised concerns over the potential effect on disease spread. Temperature is a well known factor affecting mosquito population dynamics and the development rate of the malaria parasite within the mosquito, and consequently, malaria transmission. A sinusoidal wave is commonly used to incorporate temperature effects in malaria models, however, we introduce a seasonal malaria framework that links data on temperature-dependent mosquito and parasite demographic traits to average monthly regional temperature data, without forcing a sinusoidal fit to the data. We introduce a spline methodology that maps temperature-dependent mosquito traits to time-varying model parameters. The resulting non-autonomous system of differential equations is used to study the impact of seasonality on malaria transmission dynamics and burden in a high and low malaria transmission region in Malawi. We present numerical simulations illustrating how temperature shifts alter the entomological inoculation rate and the number of malaria infections in these regions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23737867
Volume :
10
Issue :
1
Database :
Complementary Index
Journal :
Letters in Biomathematics
Publication Type :
Academic Journal
Accession number :
174902829