Back to Search Start Over

Enhanced Wind-Field Detection Using an Adaptive Noise-Reduction Peak-Retrieval (ANRPR) Algorithm for Coherent Doppler Lidar.

Authors :
Li, Qingsong
Zhang, Xiaojie
Feng, Zhihao
Chen, Jiahong
Zhou, Xue
Luo, Jiankang
Sun, Jingqi
Zhao, Yuefeng
Source :
Atmosphere; Jan2024, Vol. 15 Issue 1, p7, 16p
Publication Year :
2024

Abstract

Wind fields provide direct power for exchanging energy and matter in the atmosphere. All-fiber coherent Doppler lidar is a powerful tool for detecting boundary-layer wind fields. According to the characteristics of the lidar echo signal, an adaptive noise-reduction peak retrieval (ANRPR) algorithm is proposed in this study. Firstly, the power spectrum data are divided into several continuous range gates according to the time series. Then, the adaptive iterative reweighted penalized least-squares (airPLS) method is used to reduce the background noise. Secondly, the continuity between spectra is enhanced by 2D Gaussian low-pass filtering. Finally, an adaptive peak-retrieval algorithm is employed to extract the Doppler shift, facilitating the synthesis of a spatial atmospheric 3D wind field through the vector synthesis method. When comparing data from different heights of the meteorological gradient tower, both the horizontal wind-speed correlation and the horizontal wind-direction correlation exceed 0.90. Experimental results show that the proposed algorithm has better robustness and a longer detection distance than the traditional algorithm. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734433
Volume :
15
Issue :
1
Database :
Complementary Index
Journal :
Atmosphere
Publication Type :
Academic Journal
Accession number :
175047427
Full Text :
https://doi.org/10.3390/atmos15010007