Back to Search Start Over

CT-based radiomics: predicting early outcomes after percutaneous transluminal renal angioplasty in patients with severe atherosclerotic renal artery stenosis.

Authors :
Fu, Jia
Fang, Mengjie
Lin, Zhiyong
Qiu, Jianxing
Yang, Min
Tian, Jie
Dong, Di
Zou, Yinghua
Source :
Visual Computing for Industry, Biomedicine & Art; 1/12/2024, Vol. 7, p1-15, 15p
Publication Year :
2024

Abstract

This study aimed to comprehensively evaluate non-contrast computed tomography (CT)-based radiomics for predicting early outcomes in patients with severe atherosclerotic renal artery stenosis (ARAS) after percutaneous transluminal renal angioplasty (PTRA). A total of 52 patients were retrospectively recruited, and their clinical characteristics and pretreatment CT images were collected. During a median follow-up period of 3.7 mo, 18 patients were confirmed to have benefited from the treatment, defined as a 20% improvement from baseline in the estimated glomerular filtration rate. A deep learning network trained via self-supervised learning was used to enhance the imaging phenotype characteristics. Radiomics features, comprising 116 handcrafted features and 78 deep learning features, were extracted from the affected renal and perirenal adipose regions. More features from the latter were correlated with early outcomes, as determined by univariate analysis, and were visually represented in radiomics heatmaps and volcano plots. After using consensus clustering and the least absolute shrinkage and selection operator method for feature selection, five machine learning models were evaluated. Logistic regression yielded the highest leave-one-out cross-validation accuracy of 0.780 (95%CI: 0.660–0.880) for the renal signature, while the support vector machine achieved 0.865 (95%CI: 0.769–0.942) for the perirenal adipose signature. SHapley Additive exPlanations was used to visually interpret the prediction mechanism, and a histogram feature and a deep learning feature were identified as the most influential factors for the renal signature and perirenal adipose signature, respectively. Multivariate analysis revealed that both signatures served as independent predictive factors. When combined, they achieved an area under the receiver operating characteristic curve of 0.888 (95%CI: 0.784–0.992), indicating that the imaging phenotypes from both regions complemented each other. In conclusion, non-contrast CT-based radiomics can be leveraged to predict the early outcomes of PTRA, thereby assisting in identifying patients with ARAS suitable for this treatment, with perirenal adipose tissue providing added predictive value. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
25244442
Volume :
7
Database :
Complementary Index
Journal :
Visual Computing for Industry, Biomedicine & Art
Publication Type :
Academic Journal
Accession number :
175079502
Full Text :
https://doi.org/10.1186/s42492-023-00152-5