Back to Search Start Over

Solid-Phase Microextraction/Gas Chromatography–Time-of-Flight Mass Spectrometry Approach Combined with Network Pharmacology Analysis to Evaluate the Quality of Agarwood from Different Regions against Anxiety Disorder.

Authors :
Pang, Yue
Yu, Wenjuan
Liang, Wenyi
Gao, Yu
Yang, Fan
Zhu, Yuanyuan
Feng, Lei
Yin, Hongmei
Liu, Yumin
Source :
Molecules; Jan2024, Vol. 29 Issue 2, p468, 16p
Publication Year :
2024

Abstract

Agarwood (Aquilaria malaccensis Lam.) is a resinous material from different geographical locations. The current evaluation of agarwood quality is usually based on its physical properties and chemical compounds, yet only a few studies have linked agarwood quality with its anxiolytic effect, as indicated by characteristic compounds. In this study, using solid-phase microextraction/gas chromatography–time-of-flight mass spectrometry (SPME/GC-TOFMS) and multivariate analysis, we found 116 significantly different compounds in agarwood samples from four locations in Southeast Asia with regard to their quality. Brunei and Nha Trang agarwood had abundant sesquiterpenoids, exhibiting notable pharmacological efficacy in relieving anxiety. Malaysian and Irian agarwood had abundant alcohols and aldehydes, qualifying them as high-quality spices. Compound–target–disease network and pathway enrichment analysis were further employed to predict 79 gene targets and 20 pathways associated with the anxiolytic effects based on the 62 sesquiterpenoids. The correlated relationships among the sesquiterpenoids and targets suggest that agarwood treats anxiety via multiple compounds acting on multiple targets. Varying levels of sesquiterpenes across agarwood groups might lead to differences in the anxiolytic effects via signaling pathways, such as neurotransmitter- and hormone-regulated pathways. Our study originally evaluates agarwood quality and its anxiolytic effect by linking the characteristic compounds to potential gene targets and pathways. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
29
Issue :
2
Database :
Complementary Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
175079735
Full Text :
https://doi.org/10.3390/molecules29020468