Back to Search Start Over

Investigating the differences in calculating global mean surface CO2 abundance: the impact of analysis methodologies and site selection.

Authors :
Wu, Zhendong
Vermeulen, Alex
Sawa, Yousuke
Karstens, Ute
Peters, Wouter
de Kok, Remco
Lan, Xin
Nagai, Yasuyuki
Ogi, Akinori
Tarasova, Oksana
Source :
Atmospheric Chemistry & Physics; 2024, Vol. 24 Issue 2, p1249-1264, 16p
Publication Year :
2024

Abstract

The World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) coordinates high-quality atmospheric greenhouse gas observations globally and provides these observations through the WMO World Data Centre for Greenhouse Gases (WDCGG) supported by Japan Meteorological Agency. The WDCGG and the National Oceanic and Atmospheric Administration (NOAA) analyse these measurements using different methodologies and site selection to calculate global annual mean surface CO 2 and its growth rate as a headline climate indicator. This study introduces a third hybrid method named GFIT, which serves as an independent validation and open-source alternative to the methods described by NOAA and WDCGG. We apply GFIT to incorporate observations from most WMO GAW stations and 3D modelled CO 2 fields from CarbonTracker Europe (CTE). We find that different observational networks (i.e. NOAA, GAW, and CTE networks) and analysis methods result in differences in the calculated global surface CO 2 mole fractions equivalent to the current atmospheric growth rate over a 3-month period. However, the CO 2 growth rate derived from these networks and the CTE model output shows good agreement. Over the long-term period (40 years), both networks with and without continental sites exhibit the same trend in the growth rate (0.030 ± 0.002 ppm yr -1 each year). However, a clear difference emerges in the short-term (1-month) change in the growth rate. The network that includes continental sites improves the early detection of changes in biogenic emissions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16807316
Volume :
24
Issue :
2
Database :
Complementary Index
Journal :
Atmospheric Chemistry & Physics
Publication Type :
Academic Journal
Accession number :
175302847
Full Text :
https://doi.org/10.5194/acp-24-1249-2024