Back to Search Start Over

The influence of hindered rotation on electron transfer and exchange interaction in triarylamine-triptycene-perylene diimide triads.

Authors :
Roger, Chantal
Schmiedel, Alexander
Holzapfel, Marco
Lukzen, Nikita N.
Steiner, Ulrich E.
Lambert, Christoph
Source :
Physical Chemistry Chemical Physics (PCCP); 2/14/2024, Vol. 26 Issue 6, p4954-4967, 14p
Publication Year :
2024

Abstract

Stretched electron-donor-bridge-acceptor triads that exhibit intramolecular twisting degrees of freedom are capable of modulating exchange interaction (J) as well as electronic couplings through variable π-overlap at the linear bond links, affecting the rate constants of photoinduced charge separation and recombination. Here we present an in-depth investigation of such effects induced by methyl substituents leading to controlled steric hindrance of intramolecular twisting around biaryl axes. Starting from the parent structure, consisting of a triphenyl amine donor, a triptycene (TTC) bridge and a phenylene-perylene diimide acceptor (Me0), one of the two phenylene linkers attached to the TTC was ortho-substituted by two methyl groups (Me2, Me3), or both such phenylene linkers by two pairs of methyl groups (Me23). Photoinduced charge separation (k<subscript>CS</subscript>) leading to a charge-separated (CS) state was studied by fs-laser spectroscopy, charge recombination to either singlet ground state (k<subscript>S</subscript>) or to the first excited local triplet state of the acceptor (k<subscript>T</subscript>) by ns-laser spectroscopy, whereby kinetic magnetic field effects in an external magnetic field were recorded and analysed using quantum dynamic simulations of the spin dependent kinetics of the CS state. Kinetic spectra of the initial first order rate constants of charge recombination (k(B)) exhibited characteristic J-resonances progressing to lower fields in the series Me0, Me2, Me3, Me23. From the quantum simulations, the values of the parameters J, k<subscript>S</subscript>, k<subscript>T</subscript> and k<subscript>STD</subscript>, the singlet/triplet dephasing constant, were obtained. They were analysed in terms of molecular dynamics simulations of the intramolecular twisting dynamics based on potentials calculated by density functional theory. Apart from k<subscript>T</subscript>, all of the parameters exhibit a clear correlation with the averaged cosine square products of the biaryl angles. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14639076
Volume :
26
Issue :
6
Database :
Complementary Index
Journal :
Physical Chemistry Chemical Physics (PCCP)
Publication Type :
Academic Journal
Accession number :
175308004
Full Text :
https://doi.org/10.1039/d3cp05785b