Back to Search Start Over

A Hybrid Control Path Planning Architecture Based on Traffic Equilibrium Assignment for Emergency.

Authors :
Zhao, Zilin
Cai, Zhi
Chang, Mengmeng
Ding, Zhiming
Source :
Applied Sciences (2076-3417); Feb2024, Vol. 14 Issue 3, p1253, 21p
Publication Year :
2024

Abstract

Unconventional events exacerbate the imbalance between regional transportation demand and limited road network resources. Scientific and efficient path planning serves as the foundation for rapidly restoring equilibrium to the road network. In real large-scale road networks, especially during emergencies, it is usually difficult to obtain or predict accurate dynamic traffic network flows in real-time, which is used to support equilibrium path planning. Moreover, the traditional iterative methods cannot meet the real-time demand of emergency equilibrium path planning decision generation. To solve the above problems, this paper proposes a hybrid control architecture for path planning based on equilibrium traffic assignment theory. The architecture introduces the travelers' real-time travel data and constructs a spatio-temporal neural network, which captures the evolution of traffic network loads. Adaptive multi-graph fusion technology is used to mix the background traffic flow data and the traveler's real-time Origin–Destination (OD) data, to mine the dynamic correlation between the traffic state and the travelers' travel. Based on the real-time prediction of dynamic network states, equilibrium mapping learning is carried out to pre-allocate potential travel demands and construct equilibrium traffic graphs based on system optimization traffic assignment. Finally, individual evacuation path strategies are generated online in a data-driven manner in real time to achieve improved resilience in the transportation system. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
14
Issue :
3
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
175372495
Full Text :
https://doi.org/10.3390/app14031253