Back to Search Start Over

Event-Triggered State Filter Estimation for Nonlinear Systems with Packet Dropout and Correlated Noise.

Authors :
Cheng, Guorui
Liu, Jingang
Song, Shenmin
Source :
Sensors (14248220); Feb2024, Vol. 24 Issue 3, p769, 24p
Publication Year :
2024

Abstract

This paper begins by exploring the challenge of event-triggered state estimations in nonlinear systems, grappling with packet dropout and correlated noise. A communication mechanism is introduced that determines whether to transmit measurement values based on whether event-triggered conditions are violated, thereby minimizing redundant communication data. In designing the filter, noise decorrelation is initially conducted, followed by the integration of the event-triggered mechanism and the unreliable network transmission system for state estimator development. Subsequently, by combining the three-degree spherical–radial cubature rule, the numerical implementation steps of the proposed state estimation framework are outlined. The performance estimation analysis highlights that by adjusting the event-triggered threshold appropriately, the estimation performance and transmission rate can be effectively balanced. It is established that when there is a lower bound on the packet dropout rate, the covariance matrix of the state estimation error remains bounded, and the stochastic stability of the state estimation error is also confirmed. Ultimately, the algorithm and conclusions that are proposed in this paper are validated through a simulation example of a target tracking system. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
24
Issue :
3
Database :
Complementary Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
175390471
Full Text :
https://doi.org/10.3390/s24030769