Back to Search Start Over

Addressing Triboelectric Nanogenerator Impedance for Efficient CO2 Utilization.

Authors :
Kim, Do‐Heon
Kim, Jin‐Kyeom
Choi, Sung Yeol
Yang, Ya
Song, Hyun‐Cheol
Park, Hye Sung
Shim, Minseob
Baik, Jeong Min
Source :
Advanced Energy Materials; 2/23/2024, Vol. 14 Issue 8, p1-10, 10p
Publication Year :
2024

Abstract

Reducing the impedance of a triboelectric nanogenerator (TENG) without power loss is crucial for enhancing its energy conversion efficiency and overall performance. In this paper, a novel signal management structure, based on a newly designed sliding‐mode TENG, aimed at effectively reducing impedance by converting narrow, instantaneous signals into broader ones is presented. This transformation is accomplished by adding a grounded electrode connected to a high‐inductive inductor and fine‐tuning the parasitic capacitance of the dielectric material. Utilizing a highly resistive material like P(VDF–TrFE), a significant improvement in the TENG's performance is achieved, resulting in an increase of output power to 0.352 mW and a decrease in impedance from 3.2 to 0.3 MΩ. This results in a threefold increase in charging speed, which can be attributed to the reduced charge loss and improved matching at lower impedance. Based on these promising findings, the enhanced TENG is successfully connected to power a system for electrochemical CO2 reduction for CO production. This system effectively reduces the required electrochemical reduction potential by ≈15% under real environments. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16146832
Volume :
14
Issue :
8
Database :
Complementary Index
Journal :
Advanced Energy Materials
Publication Type :
Academic Journal
Accession number :
175639056
Full Text :
https://doi.org/10.1002/aenm.202304012