Back to Search Start Over

Non-perturbative SQED beta function using the functional renormalization group approach and the NSVZ exact beta function.

Authors :
Echeverria Puentes, Jeremy
Schmidt, Iván
Source :
Progress of Theoretical & Experimental Physics: PTEP; Jan2024, Vol. 2024 Issue 1, p1-24, 24p
Publication Year :
2024

Abstract

The renormalization group equations of massive |$\mathcal {N}=1$| supersymmetric quantum electrodynamics are studied using the functional renormalization group approach. A non-perturbative form of the beta function has been computed via a derivative expansion of the effective action. In the local potential approximation, the functional form of the non-perturbative beta function is closely related to the form of the Novikov–Shifman–Vainshtein–Zakharov (NSVZ) exact beta function; this relationship is exact if an effective fine-structure constant is defined. The non-massive limit of the same is also analyzed. Furthermore, the calculation of the beta function has been improved by incorporating the influence of momentum modes on the propagation of the superfields in the non-perturbative running of the electric charge, applying a second-order truncation for the derivative expansion, which we use to find the momentum contributions to the β function. Again, we find the NSVZ relation for an effective fine-structure constant. It is with sadness that I say goodbye to my professor, Iván Schmidt Andrade, who left us during the course of this work. His passion for research and his special vision of physics work will remain with us. Thank you for everything. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20503911
Volume :
2024
Issue :
1
Database :
Complementary Index
Journal :
Progress of Theoretical & Experimental Physics: PTEP
Publication Type :
Academic Journal
Accession number :
175648790
Full Text :
https://doi.org/10.1093/ptep/ptad150