Back to Search Start Over

Numerical Simulation and Environmental Impact Assessment of VOCs Diffusion Based on Multi-Emission Sources in the Natural Gas Purification Plant.

Authors :
Ge, Yuqian
Huang, Weiqiu
Li, Xufei
Xu, Ziqiang
Yang, Qin
Zhang, Cheng
Zhou, Ning
Kong, Xiangyu
Tian, Xinchen
Source :
Processes; Feb2024, Vol. 12 Issue 2, p364, 15p
Publication Year :
2024

Abstract

The rising number of natural gas purification plants has raised concerns about safety and environmental issues related to VOC (Volatile Organic Compounds) leakage. Therefore, it is crucial to conduct in-depth research on oil vapor emission patterns in these plants. Taking a typical natural gas purification plant as an example, a 1:1 scale model was established. Using methanol as the simulated medium, a study was conducted to investigate the impact of multiple leaks on the dispersion process of VOCs at the plant, combining field sampling with numerical simulation. The results indicate that wind speed influences the concentration of oil vapor, particularly on the leeward side, where vortex and reflux phenomena occur. The area of high concentration of oil vapor at v = 4 m·s<superscript>−1</superscript> is eight times that at v = 8 m·s<superscript>−1</superscript>. Gravity and eddy currents contribute to the accumulation of oil vapor, especially closer to the central area of the plant where surrounding buildings obstruct dispersion. Smaller distances between leakage sources result in higher concentrations of oil vapor in the central region, leading to a larger affected area in the event of an accident. The study holds significant practical significance for the research, prevention, and management of leakage and dispersion incidents. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22279717
Volume :
12
Issue :
2
Database :
Complementary Index
Journal :
Processes
Publication Type :
Academic Journal
Accession number :
175656456
Full Text :
https://doi.org/10.3390/pr12020364