Back to Search Start Over

Probabilistic activity driven model of temporal simplicial networks and its application on higher-order dynamics.

Authors :
Han, Zhihao
Liu, Longzhao
Wang, Xin
Hao, Yajing
Zheng, Hongwei
Tang, Shaoting
Zheng, Zhiming
Source :
Chaos; Feb2024, Vol. 34 Issue 2, p1-15, 15p
Publication Year :
2024

Abstract

Network modeling characterizes the underlying principles of structural properties and is of vital significance for simulating dynamical processes in real world. However, bridging structure and dynamics is always challenging due to the multiple complexities in real systems. Here, through introducing the individual's activity rate and the possibility of group interaction, we propose a probabilistic activity-driven (PAD) model that could generate temporal higher-order networks with both power-law and high-clustering characteristics, which successfully links the two most critical structural features and a basic dynamical pattern in extensive complex systems. Surprisingly, the power-law exponents and the clustering coefficients of the aggregated PAD network could be tuned in a wide range by altering a set of model parameters. We further provide an approximation algorithm to select the proper parameters that can generate networks with given structural properties, the effectiveness of which is verified by fitting various real-world networks. Finally, we construct the co-evolution framework of the PAD model and higher-order contagion dynamics and derive the critical conditions for phase transition and bistable phenomenon using theoretical and numerical methods. Results show that tendency of participating in higher-order interactions can promote the emergence of bistability but delay the outbreak under heterogeneous activity rates. Our model provides a basic tool to reproduce complex structural properties and to study the widespread higher-order dynamics, which has great potential for applications across fields. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10541500
Volume :
34
Issue :
2
Database :
Complementary Index
Journal :
Chaos
Publication Type :
Academic Journal
Accession number :
175804121
Full Text :
https://doi.org/10.1063/5.0167123