Back to Search Start Over

Global endpoint regularity estimates for the fractional Dirichlet problem.

Authors :
Ma, Wenxian
Yang, Sibei
Source :
Mathematische Zeitschrift; Apr2024, Vol. 306 Issue 4, p1-36, 36p
Publication Year :
2024

Abstract

Let n ≥ 2 , s ∈ (0 , 1) , and Ω ⊂ R n be a bounded C 2 domain. The aim of this paper is to study the global endpoint regularity estimates for the fractional Dirichlet problem (- Δ) s u = f in Ω , u = 0 in R n \ Ω. More precisely, the authors prove the optimal global BMO regularity estimates (- Δ) s 2 u BMO (R n) ≤ C ‖ f ‖ L q (Ω) and ∇ s u BMO (R n) ≤ C ‖ f ‖ L q (Ω) for some q ∈ (n s , ∞) , and the global regularity estimates (- Δ) s 2 u L p (R n) ≤ C ‖ f ‖ H q (Ω) and ∇ s u L p (R n) ≤ C ‖ f ‖ H q (Ω) for any given q ∈ (n n + s , 1 ] and p ∈ [ 1 , qn n - q s) . Here, ∇ s denotes the Riesz gradient of order s and H q (Ω) denotes the Hardy space on Ω . Moreover, the authors also obtain the global regularity estimates (- Δ) t 2 u L p (R n) ≤ C ‖ f ‖ H q (Ω) and ∇ t u L p (R n) ≤ C ‖ f ‖ H q (Ω) for any given t ∈ (s , min { 1 , s + s n }) , q ∈ (n n + s - n (t - s) , 1 ] , and p ∈ [ 1 , qn n - q s + q n (t - s)) . The global regularity estimates given in this paper are further devolvement for the corresponding results in the scale of Lebesgue spaces, established by B. Abdellaoui, A. J. Fernández, T. Leonori, and A. Younes [arXiv: 2107.06535], in the endpoint case. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00255874
Volume :
306
Issue :
4
Database :
Complementary Index
Journal :
Mathematische Zeitschrift
Publication Type :
Academic Journal
Accession number :
175877467
Full Text :
https://doi.org/10.1007/s00209-024-03456-1