Back to Search
Start Over
Neumann gradient estimate for nonlinear heat equation under integral Ricci curvature bounds.
- Source :
- AIMS Mathematics (2473-6988); 2024, Vol. 9 Issue 2, p3881-3894, 14p
- Publication Year :
- 2024
-
Abstract
- In this paper, we consider a Li-Yau gradient estimate on the positive solution to the following nonlinear parabolic equation ∂/∂t f = Δf + af (ln f)<superscript>p</superscript> with Neumann boundary conditions on a compact Riemannian manifold satisfying the integral Ricci curvature assumption, where p ≥ 0 is a real constant. This contrasts Olivé's gradient estimate, which works mainly for the heat equation rather than nonlinear parabolic equations and the result can be regarded as a generalization of the Li-Yau [P. Li, S. T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math., 156 (1986), 153-201] and Olivé [X. R. Olive, Neumann Li-Yau gradient estimate under integral Ricci curvature bounds, Proc. Amer. Math. Soc., 147 (2019), 411-426] gradient estimates. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 24736988
- Volume :
- 9
- Issue :
- 2
- Database :
- Complementary Index
- Journal :
- AIMS Mathematics (2473-6988)
- Publication Type :
- Academic Journal
- Accession number :
- 175918026
- Full Text :
- https://doi.org/10.3934/math.2024191