Back to Search Start Over

Short-Term Energy Consumption Prediction of Large Public Buildings Combined with Data Feature Engineering and Bilstm-Attention.

Authors :
Tian, Zeqin
Chen, Dengfeng
Zhao, Liang
Source :
Applied Sciences (2076-3417); Mar2024, Vol. 14 Issue 5, p2137, 20p
Publication Year :
2024

Abstract

Accurate building energy consumption prediction is a crucial condition for the sustainable development of building energy management systems. However, the highly nonlinear nature of data and complex influencing factors in the energy consumption of large public buildings often pose challenges in improving prediction accuracy. In this study, we propose a combined prediction model that combines signal decomposition, feature screening, and deep learning. First, we employ the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) to decompose energy consumption data. Next, we propose the Maximum Mutual Information Coefficient (MIC)-Fast Correlation Based Filter (FCBF) combined feature screening method for feature selection on the decomposed components. Finally, the selected input features and corresponding components are fed into the Bi-directional Long Short-Term Memory Attention Mechanism (BiLSTMAM) model for prediction, and the aggregated results yield the energy consumption forecast. The proposed approach is validated using energy consumption data from a large public building in Shaanxi Province, China. Compared with the other five comparison methods, the RMSE reduction of the CEEMDAN-MIC-FCBF-BiLSTMAM model proposed in this study ranged from 57.23% to 82.49%. Experimental results demonstrate that the combination of CEEMDAN, MIC-FCBF, and BiLSTMAM modeling markedly improves the accuracy of energy consumption predictions in buildings, offering a potent method for optimizing energy management and promoting sustainability in large-scale facilities. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
14
Issue :
5
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
175988190
Full Text :
https://doi.org/10.3390/app14052137