Back to Search Start Over

Applications of Advanced Natural Language Processing for Clinical Pharmacology.

Authors :
Hsu, Joy C.
Wu, Michael
Kim, Chloe
Vora, Bianca
Lien, Yi Ting
Jindal, Ashutosh
Yoshida, Kenta
Kawakatsu, Sonoko
Gore, Jeremy
Jin, Jin Y.
Lu, Christina
Chen, Bingyuan
Wu, Benjamin
Source :
Clinical Pharmacology & Therapeutics; Apr2024, Vol. 115 Issue 4, p786-794, 9p
Publication Year :
2024

Abstract

Natural language processing (NLP) is a branch of artificial intelligence, which combines computational linguistics, machine learning, and deep learning models to process human language. Although there is a surge in NLP usage across various industries in recent years, NLP has not been widely evaluated and utilized to support drug development. To demonstrate how advanced NLP can expedite the extraction and analyses of information to help address clinical pharmacology questions, inform clinical trial designs, and support drug development, three use cases are described in this article: (1) dose optimization strategy in oncology, (2) common covariates on pharmacokinetic (PK) parameters in oncology, and (3) physiologically‐based PK (PBPK) analyses for regulatory review and product label. The NLP workflow includes (1) preparation of source files, (2) NLP model building, and (3) automation of data extraction. The Clinical Pharmacology and Biopharmaceutics Summary Basis of Approval (SBA) documents, US package inserts (USPI), and approval letters from the US Food and Drug Administration (FDA) were used as our source data. As demonstrated in the three example use cases, advanced NLP can expedite the extraction and analyses of large amounts of information from regulatory review documents to help address important clinical pharmacology questions. Although this has not been adopted widely, integrating advanced NLP into the clinical pharmacology workflow can increase efficiency in extracting impactful information to advance drug development. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00099236
Volume :
115
Issue :
4
Database :
Complementary Index
Journal :
Clinical Pharmacology & Therapeutics
Publication Type :
Academic Journal
Accession number :
176146231
Full Text :
https://doi.org/10.1002/cpt.3161