Back to Search Start Over

Neural Radiance Field-Inspired Depth Map Refinement for Accurate Multi-View Stereo †.

Authors :
Ito, Shintaro
Miura, Kanta
Ito, Koichi
Aoki, Takafumi
Source :
Journal of Imaging; Mar2024, Vol. 10 Issue 3, p68, 21p
Publication Year :
2024

Abstract

In this paper, we propose a method to refine the depth maps obtained by Multi-View Stereo (MVS) through iterative optimization of the Neural Radiance Field (NeRF). MVS accurately estimates the depths on object surfaces, and NeRF accurately estimates the depths at object boundaries. The key ideas of the proposed method are to combine MVS and NeRF to utilize the advantages of both in depth map estimation and to use NeRF for depth map refinement. We also introduce a Huber loss into the NeRF optimization to improve the accuracy of the depth map refinement, where the Huber loss reduces the estimation error in the radiance fields by placing constraints on errors larger than a threshold. Through a set of experiments using the Redwood-3dscan dataset and the DTU dataset, which are public datasets consisting of multi-view images, we demonstrate the effectiveness of the proposed method compared to conventional methods: COLMAP, NeRF, and DS-NeRF. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2313433X
Volume :
10
Issue :
3
Database :
Complementary Index
Journal :
Journal of Imaging
Publication Type :
Academic Journal
Accession number :
176336398
Full Text :
https://doi.org/10.3390/jimaging10030068