Back to Search Start Over

Cross-Parallel Attention and Efficient Match Transformer for Aerial Tracking.

Authors :
Deng, Anping
Han, Guangliang
Zhang, Zhongbo
Chen, Dianbing
Ma, Tianjiao
Liu, Zhichao
Source :
Remote Sensing; Mar2024, Vol. 16 Issue 6, p961, 21p
Publication Year :
2024

Abstract

Visual object tracking is a key technology that is used in unmanned aerial vehicles (UAVs) to achieve autonomous navigation. In recent years, with the rapid development of deep learning, tracking algorithms based on Siamese neural networks have received widespread attention. However, because of complex and diverse tracking scenarios, as well as limited computational resources, most existing tracking algorithms struggle to ensure real-time stable operation while improving tracking performance. Therefore, studying efficient and fast-tracking frameworks, and enhancing the ability of algorithms to respond to complex scenarios has become crucial. Therefore, this paper proposes a cross-parallel attention and efficient match transformer for aerial tracking (SiamEMT). Firstly, we carefully designed the cross-parallel attention mechanism to encode global feature information and to achieve cross-dimensional interaction and feature correlation aggregation via parallel branches, highlighting feature saliency and reducing global redundancy information, as well as improving the tracking algorithm's ability to distinguish between targets and backgrounds. Meanwhile, we implemented an efficient match transformer to achieve feature matching. This network utilizes parallel, lightweight, multi-head attention mechanisms to pass template information to the search region features, better matching the global similarity between the template and search regions, and improving the algorithm's ability to perceive target location and feature information. Experiments on multiple drone public benchmark tests verified the accuracy and robustness of the proposed tracker in drone tracking scenarios. In addition, on the embedded artificial intelligence (AI) platform AGX Xavier, our algorithm achieved real-time tracking speed, indicating that our algorithm can be effectively applied to UAV tracking scenarios. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
16
Issue :
6
Database :
Complementary Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
176366532
Full Text :
https://doi.org/10.3390/rs16060961