Back to Search Start Over

SST Forecast Skills Based on Hybrid Deep Learning Models: With Applications to the South China Sea.

Authors :
Zhang, Mengmeng
Han, Guijun
Wu, Xiaobo
Li, Chaoliang
Shao, Qi
Li, Wei
Cao, Lige
Wang, Xuan
Dong, Wanqiu
Ji, Zenghua
Source :
Remote Sensing; Mar2024, Vol. 16 Issue 6, p1034, 19p
Publication Year :
2024

Abstract

We explore to what extent data-driven prediction models have skills in forecasting daily sea-surface temperature (SST), which are comparable to or perform better than current physics-based operational systems over long-range forecast horizons. Three hybrid deep learning-based models are developed within the South China Sea (SCS) basin by integrating deep neural networks (back propagation, long short-term memory, and gated recurrent unit) with traditional empirical orthogonal function analysis and empirical mode decomposition. Utilizing a 40-year (1982–2021) satellite-based daily SST time series on a 0.25° grid, we train these models on the first 32 years (1982–2013) of detrended SST anomaly (SSTA) data. Their predictive accuracies are then validated using data from 2014 and tested over the subsequent seven years (2015–2021). The models' forecast skills are assessed using spatial anomaly correlation coefficient (ACC) and root-mean-square error (RMSE), with ACC proving to be a stricter metric. A forecast skill horizon, defined as the lead time before ACC drops below 0.6, is determined to be 50 days. The models are equally capable of achieving a basin-wide average ACC of ~0.62 and an RMSE of ~0.48 °C at this horizon, indicating a 36% improvement in RMSE over climatology. This implies that on average the forecast skill horizon for these models is beyond the available forecast length. Analysis of one model, the BP neural network, reveals a variable forecast skill horizon (5 to 50 days) for each individual day, showing that it can adapt to different time scales. This adaptability seems to be influenced by a number of mechanisms arising from the evident regional and global atmosphere–ocean coupling variations on time scales ranging from intraseasonal to decadal in the SSTA of the SCS basin. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
16
Issue :
6
Database :
Complementary Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
176366605
Full Text :
https://doi.org/10.3390/rs16061034