Back to Search Start Over

Characteristics and dynamics of extreme winters in the Barents Sea in a changing climate.

Authors :
Hartmuth, Katharina
Wernli, Heini
Papritz, Lukas
Source :
EGUsphere; 4/4/2024, p1-33, 33p
Publication Year :
2024

Abstract

The Barents Sea is experiencing large trends in sea ice decline and increasing surface temperatures while at the same time, it is a key region of weather variability in the Arctic and therefore predestined for the occurrence of surface weather extremes. In this study, we identify extreme winter seasons in the Barents Sea, based on a multivariate method, as winters with large seasonal-mean anomalies in one or several surface parameters encompassing surface temperature, precipitation, surface heat fluxes and surface net radiation. Using large-ensemble climate model data for historical (S2000) and end-of-century (S2100) projections following a RCP8.5 emission scenario, we find distinct clusters of extreme winters that are characterized by similar combinations of anomalies in these key surface weather parameters. In particular, we find that, during extreme winters, seasonal-mean anomalies in surface temperature are usually spatially extended with a maximum over sea ice in S2000 simulations, which shifts towards the continental land masses in a warmer climate, as the formation of a warm or cold air reservoir is being hampered by the increasing area of open ocean. Several extreme winters are selected for a detailed investigation of their substructure focusing on the relative importance of anomalies in the occurrence of synoptic-scale weather systems and anomalous surface boundary conditions for the formation of such seasons. Large combined anomalies in the key surface parameters result mainly from the accumulation of recurrent short-term events that are linked to distinct patterns of anomalous frequencies in cyclones, anticyclones and cold air outbreaks. While large seasonal-mean anomalies in surface air temperature can be linked to large-scale patterns facilitating the horizontal advection of relatively warmer (colder) air, which coincides with a lack (surplus) of cold air outbreaks, precipitation anomalies are characterized by local anomalies in cyclone and anticyclone frequency. Additionally, anomalous surface boundary conditions – that is sea ice concentration and sea surface temperatures – facilitate the formation of persistent anomalous surface conditions or further enhance atmospherically driven anomalies due to anomalous surface heat fluxes. In a warmer climate, we find extreme winters with similar substructures as in S2000. However, the increasing distance of the Barents Sea to the sea ice edge causes a decreasing magnitude in seasonal-mean anomalies of surface air temperatures and the atmospheric components of the surface energy balance. A decrease in the variability of both sea ice and sea surface temperatures indicates a decreasing importance in anomalous surface boundary conditions for the formation of future extreme winters in the Barents Sea, while the robust link shown for surface weather systems persists in a warmer climate. [ABSTRACT FROM AUTHOR]

Details

Language :
English
Database :
Complementary Index
Journal :
EGUsphere
Publication Type :
Academic Journal
Accession number :
176431040
Full Text :
https://doi.org/10.5194/egusphere-2024-878