Back to Search
Start Over
Global boundedness for a chemotaxis system involving nonlinear indirect consumption mechanism.
- Source :
- Discrete & Continuous Dynamical Systems - Series B; May2024, Vol. 29 Issue 5, p1-17, 17p
- Publication Year :
- 2024
-
Abstract
- We study the following chemotaxis system$ \begin{equation*} \left\{ \begin{array}{ll} u_{t} = \Delta u-\chi\nabla \cdot (u\nabla v)+\eta(u-u^{m}),\ &\ \ x\in \Omega, \ t>0,\\[2.5mm] v_{t} = \Delta v-u^{\theta}vw, \ &\ \ x\in \Omega, \ t>0,\\[2.5mm] 0 = \Delta w-w+u^{\alpha}, \ &\ \ x\in \Omega, \ t>0 , \end{array} \right. \end{equation*} $in a smooth and bounded domain $ \Omega\subset\mathbb{R}^{n}(n\geq 2) $ under homogeneous Neumann boundary conditions, where $ \chi, \eta, \alpha,\theta>0 $ and $ m>1. $ It has been shown that if $ l_{0} = \max\{\alpha,\theta\} $ and $ m $ satisfy$ \begin{equation*} \left\{ \begin{array}{ll} m>l_{0}(n+2),\ &\ \ \mbox{if} \ l_{0}>\frac{1}{n+2},\\[2.5mm] m>1, \ &\ \ \mbox{if} \ 0<l_{0}\leq\frac{1}{n+2}, \end{array} \right. \end{equation*} $then the corresponding initial-boundary value problem admits a classical solution which is bounded in $ \Omega \times (0,\infty). $ [ABSTRACT FROM AUTHOR]
- Subjects :
- CHEMOTAXIS
CONSUMPTION (Economics)
NEUMANN boundary conditions
NONLINEAR systems
Subjects
Details
- Language :
- English
- ISSN :
- 15313492
- Volume :
- 29
- Issue :
- 5
- Database :
- Complementary Index
- Journal :
- Discrete & Continuous Dynamical Systems - Series B
- Publication Type :
- Academic Journal
- Accession number :
- 176479455
- Full Text :
- https://doi.org/10.3934/dcdsb.2023171