Back to Search
Start Over
On the exterior Dirichlet problem for Hessian-type fully nonlinear elliptic equations.
- Source :
- Communications in Contemporary Mathematics; May2024, Vol. 26 Issue 4, p1-29, 29p
- Publication Year :
- 2024
-
Abstract
- We treat the exterior Dirichlet problem for a class of fully nonlinear elliptic equations of the form f (λ (D 2 u)) = g (x) with prescribed asymptotic behavior at infinity. The equations of this type had been studied extensively by Caffarelli et al. [The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985) 261–301], Trudinger [On the Dirichlet problem for Hessian equations, Acta Math. 175 (1995) 151–164] and many others, and there had been significant discussions on the solvability of the classical Dirichlet problem via the continuity method, under the assumption that f is a concave function. In this paper, based on Perron's method, we establish an exterior existence and uniqueness result for viscosity solutions of the equations, by assuming f to satisfy certain structure conditions as in [L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985) 261–301; N. S. Trudinger, On the Dirichlet problem for Hessian equations, Acta Math. 175 (1995) 151–164] but without requiring the concavity of f. The equations in our setting may embrace the well-known Monge–Ampère equations, Hessian equations and Hessian quotient equations as special cases. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 02191997
- Volume :
- 26
- Issue :
- 4
- Database :
- Complementary Index
- Journal :
- Communications in Contemporary Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- 176558084
- Full Text :
- https://doi.org/10.1142/S0219199722500821