Back to Search Start Over

High-Efficiency and High-Precision Ship Detection Algorithm Based on Improved YOLOv8n.

Authors :
Lan, Kun
Jiang, Xiaoliang
Ding, Xiaokang
Lin, Huan
Chan, Sixian
Source :
Mathematics (2227-7390); Apr2024, Vol. 12 Issue 7, p1072, 14p
Publication Year :
2024

Abstract

With the development of the intelligent vision industry, ship detection and identification technology has gradually become a research hotspot in the field of marine insurance and port logistics. However, due to the interference of rain, haze, waves, light, and other bad weather, the robustness and effectiveness of existing detection algorithms remain a continuous challenge. For this reason, an improved YOLOv8n algorithm is proposed for the detection of ship targets under unforeseen environmental conditions. In the proposed method, the efficient multi-scale attention module (C2f_EMAM) is introduced to integrate the context information of different scales so that the convolutional neural network can generate better pixel-level attention to high-level feature maps. In addition, a fully-concatenate bi-directional feature pyramid network (Concatenate_FBiFPN) is adopted to replace the simple superposition/addition of feature map, which can better solve the problem of feature propagation and information flow in target detection. An improved spatial pyramid pooling fast structure (SPPF2+1) is also designed to emphasize low-level pooling features and reduce the pooling depth to accommodate the information characteristics of the ship. A comparison experiment was conducted between other mainstream methods and our proposed algorithm. Results showed that our proposed algorithm outperformed other models by achieving 99.4% of accuracy, 98.2% of precision, 98.5% of recall, 99.1% of mAP@.5, and 85.4% of mAP@.5:.95 on the SeaShips dataset. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22277390
Volume :
12
Issue :
7
Database :
Complementary Index
Journal :
Mathematics (2227-7390)
Publication Type :
Academic Journal
Accession number :
176593852
Full Text :
https://doi.org/10.3390/math12071072