Back to Search Start Over

Sprayable Zwitterionic Antibacterial Hydrogel With High Mechanical Resilience and Robust Adhesion for Joint Wound Treatment.

Authors :
Hu, Qinsheng
Du, Yangrui
Bai, Yangjing
Xing, Dandan
Lang, Shiying
Li, Kaijun
Li, Xinyun
Nie, Yong
Liu, Gongyan
Source :
Macromolecular Rapid Communications; Apr2024, Vol. 45 Issue 8, p1-13, 13p
Publication Year :
2024

Abstract

Wound healing in movable parts, including the joints and neck, remains a critical challenge due to frequent motions and poor flexibility of dressings, which may lead to mismatching of mechanical properties and poor fitting between dressings and wounds; thus, increasing the risk of bacterial infection. This study proposes a sprayable zwitterionic antibacterial hydrogel with outstanding flexibility and desirable adhesion. This hydrogel precursor is fabricated by combining zwitterionic sulfobetaine methacrylate (SBMA) with poly(sulfobetaine methacrylate‐co‐dopamine methacrylamide)‐modified silver nanoparticles (PSBDA@AgNPs) through robust electrostatic interactions. About 150 s of exposure to UV light, the SBMA monomer polymerizes to form PSB chains entangled with PSBDA@AgNPs, transformed into a stable and adhesion PSB–PSB@Ag hydrogel at the wound site. The resulting hydrogel has adhesive strength (15–38 kPa), large tensile strain (>400%), suitable shape adaptation, and excellent mechanical resilience. Moreover, the hydrogel displays pH‐responsive behavior; the acidic microenvironment at the infected wound sites prompts the hydrogel to rapidly release AgNPs and kill bacteria. Further, the healing effect of the hydrogel is demonstrated on the rat neck skin wound, showing improved wound closing rate due to reduced inflammation and enhanced angiogenesis. Overall, the sprayable zwitterionic antibacterial hydrogel has significant potential to promote joint skin wound healing. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10221336
Volume :
45
Issue :
8
Database :
Complementary Index
Journal :
Macromolecular Rapid Communications
Publication Type :
Academic Journal
Accession number :
176764155
Full Text :
https://doi.org/10.1002/marc.202300683