Back to Search Start Over

Interventional device tracking under MRI via alternating current controlled inhomogeneities.

Authors :
Uzun, Dogangun
Yildirim, Dursun Korel
Bruce, Christopher G.
Halaby, Rim N.
Jaimes, Andrea E.
Potersnak, Amanda
Ramasawmy, Rajiv
Campbell‐Washburn, Adrienne E.
Lederman, Robert J.
Kocaturk, Ozgur
Source :
Magnetic Resonance in Medicine; Jul2024, Vol. 92 Issue 1, p346-360, 15p
Publication Year :
2024

Abstract

Purpose: To introduce alternating current‐controlled, conductive ink‐printed marker that could be implemented with both custom and commercial interventional devices for device tracking under MRI using gradient echo, balanced SSFP, and turbo spin‐echo sequences. Methods: Tracking markers were designed as solenoid coils and printed on heat shrink tubes using conductive ink. These markers were then placed on three MR‐compatible test samples that are typically challenging to visualize during MRI scans. MRI visibility of markers was tested by applying alternating and direct current to the markers, and the effects of applied current parameters (amplitude, frequency) on marker artifacts were tested for three sequences (gradient echo, turbo spin echo, and balanced SSFP) in a gel phantom, using 0.55T and 1.5T MRI scanners. Furthermore, an MR‐compatible current supply circuit was designed, and the performance of the current‐controlled markers was tested in one postmortem animal experiment using the current supply circuit. Results: Direction and parameters of the applied current were determined to provide the highest conspicuity for all three sequences. Marker artifact size was controlled by adjusting the current amplitude, successfully. Visibility of a custom‐designed, 20‐gauge nitinol needle was increased in both in vitro and postmortem animal experiments using the current supply circuit. Conclusion: Current‐controlled conductive ink‐printed markers can be placed on custom or commercial MR‐compatible interventional tools and can provide an easy and effective solution to device tracking under MRI for three sequences by adjusting the applied current parameters with respect to pulse sequence parameters using the current supply circuit. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
07403194
Volume :
92
Issue :
1
Database :
Complementary Index
Journal :
Magnetic Resonance in Medicine
Publication Type :
Academic Journal
Accession number :
176868673
Full Text :
https://doi.org/10.1002/mrm.30031