Back to Search Start Over

Mobile_ViT: Underwater Acoustic Target Recognition Method Based on Local–Global Feature Fusion.

Authors :
Yao, Haiyang
Gao, Tian
Wang, Yong
Wang, Haiyan
Chen, Xiao
Source :
Journal of Marine Science & Engineering; Apr2024, Vol. 12 Issue 4, p589, 16p
Publication Year :
2024

Abstract

To overcome the challenges of inadequate representation and ineffective information exchange stemming from feature homogenization in underwater acoustic target recognition, we introduce a hybrid network named Mobile_ViT, which synergizes MobileNet and Transformer architectures. The network begins with a convolutional backbone incorporating an embedded coordinate attention mechanism to enhance the local details of inputs. This mechanism captures the long-term temporal dependencies and precise frequency–domain relationships of signals, focusing the features on the time–frequency positions. Subsequently, the Transformer's Encoder is integrated at the end of the backbone to facilitate global characterization, thus effectively overcoming the convolutional neural network's shortcomings in capturing long-range feature dependencies. Evaluation on the Shipsear and DeepShip datasets yields accuracies of 98.50% and 94.57%, respectively, marking a substantial improvement over the baseline. Notably, the proposed method also demonstrates obvious separation coefficients, signifying enhanced clustering effectiveness, and is lighter than other Transformers. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20771312
Volume :
12
Issue :
4
Database :
Complementary Index
Journal :
Journal of Marine Science & Engineering
Publication Type :
Academic Journal
Accession number :
176879803
Full Text :
https://doi.org/10.3390/jmse12040589