Back to Search Start Over

A Parametric Study Investigating the Dowel Bar Load Transfer Efficiency in Jointed Plain Concrete Pavement Using a Finite Element Model.

Authors :
Yaqoob, Saima
Silfwerbrand, Johan
Balieu, Romain Gabriel Roger
Source :
Buildings (2075-5309); Apr2024, Vol. 14 Issue 4, p1039, 20p
Publication Year :
2024

Abstract

Transverse joints are introduced in jointed plain concrete pavement systems to mitigate the risk of cracks that can develop due to shrinkage and temperature variations. However, the structural behaviour of jointed plain concrete pavement (JPCP) is significantly affected by the transverse joint, as it creates a discontinuity between adjacent slabs. The performance of JPCP at the transverse joints is enhanced by providing steel dowel bars in the traffic direction. The dowel bar provides reliable transfer of traffic loads from the loaded side of the joint to the unloaded side, known as load transfer efficiency (LTE) or joint efficiency (JE). Furthermore, dowel bars contribute to the slab's alignment in the JPCP. Joints are the critical component of concrete pavements that can lead to various distresses, necessitating rehabilitation. The Swedish Transport Administration (Trafikverket) is concerned with the repair of concrete pavement. Precast concrete slabs are efficient for repairing concrete pavement, but their performance relies on well-functioning dowel bars. In this study, a three-dimensional finite element model (3D-FEM) was developed using the ABAQUS software to evaluate the structural response of JPCP and analyse the flexural stress concentration in the concrete slab by considering the dowel bar at three different locations (i.e., at the concrete slabs' top, bottom, and mid-height). Furthermore, the structural response of JPCP was also investigated for several important parameters, such as the joint opening between adjacent slabs, mispositioning of dowel bars (horizontal, vertical, and longitudinal translations), size (diameter) of the dowel bar, and bond between the slab and the dowel bar. The study found that the maximum LTE occurred when the dowel bar was positioned at the mid-depth of the concrete slab. An increase in the dowel bar diameter yielded a 3% increase in LTE. Conversely, the increase in the joint opening between slabs led to a 2.1% decrease in LTE. Additionally, the mispositioning of dowel bars in the horizontal and longitudinal directions showed a 2.1% difference in the LTE. However, a 0.5% reduction in the LTE was observed for a vertical translation. Moreover, an approximately 0.5% increase in LTE was observed when there was improved bonding between the concrete slab and dowel bar. These findings can be valuable in designing and evaluating dowel-jointed plain concrete pavements. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20755309
Volume :
14
Issue :
4
Database :
Complementary Index
Journal :
Buildings (2075-5309)
Publication Type :
Academic Journal
Accession number :
176881530
Full Text :
https://doi.org/10.3390/buildings14041039