Back to Search
Start Over
On graded weakly Jgr-semiprime submodules.
- Source :
- AIMS Mathematics; 2024, Vol. 9 Issue 5, p12315-12322, 8p
- Publication Year :
- 2024
-
Abstract
- Let Γ be a group, A be a Γ-graded commutative ring with unity 1, and D a graded A-module. In this paper, we introduce the concept of graded weakly J<subscript>gr</subscript>-semiprime submodules as a generalization of graded weakly semiprime submodules. We study several results concerning of graded weakly J<subscript>gr</subscript>-semiprime submodules. For example, we give a characterization of graded weakly J<subscript>gr</subscript>-semiprime submodules. Also, we find some relations between graded weakly J<subscript>gr</subscript>-semiprime submodules and graded weakly semiprime submodules. In addition, the necessary and sufficient condition for graded submodules to be graded weakly J<subscript>gr</subscript>-semiprime submodules are investigated. A proper graded submodule U of D is said to be a graded weakly J<subscript>gr</subscript>-semiprime submodule of D if whenever r<subscript>g</subscript> ∈ h(A); m<subscript>h</subscript> ∈ h(D) and n ∈ Z<superscript>+</superscript> with 0 ≠ r<superscript>n</superscript><subscript>g</subscript>m<subscript>h</subscript> ∈ U, then r<subscript>g</subscript>m<subscript>h</subscript> ∈ U + J<subscript>gr</subscript>(D), where J<subscript>gr</subscript>(D) is the graded Jacobson radical of D. [ABSTRACT FROM AUTHOR]
- Subjects :
- JACOBSON radical
GENERALIZATION
COMMUTATIVE rings
Subjects
Details
- Language :
- English
- ISSN :
- 24736988
- Volume :
- 9
- Issue :
- 5
- Database :
- Complementary Index
- Journal :
- AIMS Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- 177055304
- Full Text :
- https://doi.org/10.3934/math.2024602