Back to Search Start Over

Comparative metabolomics combined with genome sequencing provides insights into novel wolfberry-specific metabolites and their formation mechanisms.

Authors :
Qiyuan Long
Changjian Zhang
Hui Zhu
Yutong Zhou
Shuo Liu
Yanchen Liu
Xuemin Ma
Wei An
Jun Zhou
Jianhua Zhao
Yuanyuan Zhang
Cheng Jin
Source :
Frontiers in Plant Science; 2024, p01-12, 12p
Publication Year :
2024

Abstract

Wolfberry (Lycium, of the family Solanaceae) has special nutritional benefits due to its valuable metabolites. Here, 16 wolfberry-specific metabolites were identified by comparing the metabolome of wolfberry with those of six species, including maize, rice, wheat, soybean, tomato and grape. The copy numbers of the riboflavin and phenyllactate degradation genes riboflavin kinase (RFK) and phenyllactate UDP-glycosyltransferase (UGT1) were lower in wolfberry than in other species, while the copy number of the phenyllactate synthesis gene hydroxyphenyl-pyruvate reductase (HPPR) was higher in wolfberry, suggesting that the copy number variation of these genes among species may be the main reason for the specific accumulation of riboflavin and phenyllactate in wolfberry. Moreover, the metabolome-based neighbor-joining tree revealed distinct clustering of monocots and dicots, suggesting that metabolites could reflect the evolutionary relationship among those species. Taken together, we identified 16 specific metabolites in wolfberry and provided new insight into the accumulation mechanism of species-specific metabolites at the genomic level. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1664462X
Database :
Complementary Index
Journal :
Frontiers in Plant Science
Publication Type :
Academic Journal
Accession number :
177241461
Full Text :
https://doi.org/10.3389/fpls.2024.1392175