Back to Search Start Over

Impact of HfO2 Dielectric Layer Placement in Hf0.5Zr0.5O2‐Based Ferroelectric Tunnel Junctions for Neuromorphic Applications.

Authors :
Kim, Juri
Park, Yongjin
Lee, Jungwoo
Lim, Eunjin
Lee, Jung‐Kyu
Kim, Sungjun
Source :
Advanced Materials Technologies; May2024, Vol. 9 Issue 10, p1-11, 11p
Publication Year :
2024

Abstract

The use of Hf0.5Zr0.5O2 (HZO) films within hafnia‐based ferroelectric tunnel junctions (FTJ) presents a promising avenue for next‐generation non‐volatile memory devices. HZO exhibits excellent ferroelectric properties, ultra‐thinness, low power consumption, nondestructive readout, and compatibility with silicon devices. In this study, Mo/HZO/n+ Si devices are investigated, incorporating a 1 nm HfO2 dielectric layer at the top and bottom of the HZO ferroelectric layer. Comparing the FTJ device configurations, it is observed that the metal‐ferroelectric‐dielectric‐semiconductor (MFIS) outperforms the metal‐dielectric‐ferroelectric‐semiconductor (MIFS) in terms of ferroelectricity, displaying a high 2Pr value of ≈69 µC cm−2. Additionally, MFIS exhibits lower leakage current, higher tunneling electro‐resistance ratio, and a thin dead layer during short pulse switching, as confirmed through DC double sweeping of I−V characteristics. The modified half‐bias scheme demonstrates a maximum array size of 191 for MFIS, showcasing its superior performance over MIFS. Synaptic characteristics, including potentiation, depression, paired‐pulse facilitation, spike‐rate‐dependent plasticity, and excitatory postsynaptic current, are measured using MFIS, highlighting its outstanding ferroelectric properties. As a physical reservoir, the FTJ device implements 16 states of 4 bits in reservoir computing. Finally, pattern recognition using a deep learning neural network achieves high accuracy with using the Modified National Institute of Standards and Technology dataset. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2365709X
Volume :
9
Issue :
10
Database :
Complementary Index
Journal :
Advanced Materials Technologies
Publication Type :
Academic Journal
Accession number :
177398550
Full Text :
https://doi.org/10.1002/admt.202400050